Incorporating scientific knowledge into phenotype development: Penalized latent class regression
نویسندگان
چکیده
منابع مشابه
Incorporating Boosted Regression Trees into Ecological Latent Variable Models
Important ecological phenomena are often observed indirectly. Consequently, probabilistic latent variable models provide an important tool, because they can include explicit models of the ecological phenomenon of interest and the process by which it is observed. However, existing latent variable methods rely on handformulated parametric models, which are expensive to design and require extensiv...
متن کاملIncorporating Semantic Knowledge into Latent Matching Model in Search
The relevance between a query and a document in search can be represented as matching degree between the two objects. Latent space models have been proven to be effective for the task, which are often trained with click-through data. One technical challenge with the approach is that it is hard to train a model for tail queries and tail documents for which there are not enough clicks. In this pa...
متن کاملLatent class regression on latent factors.
In the research of public health, psychology, and social sciences, many research questions investigate the relationship between a categorical outcome variable and continuous predictor variables. The focus of this paper is to develop a model to build this relationship when both the categorical outcome and the predictor variables are latent (i.e. not observable directly). This model extends the l...
متن کاملIncorporating Prior Knowledge into
We describe a modiication to the AdaBoost algorithm that permits the incorporation of prior human knowledge as a means of compensating for a shortage of training data. We give a convergence result for the algorithm. We describe experiments on four datasets showing that prior knowledge can substantially improve performance.
متن کاملIncorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms
MOTIVATION In the context of sample (e.g. tumor) classifications with microarray gene expression data, many methods have been proposed. However, almost all the methods ignore existing biological knowledge and treat all the genes equally a priori. On the other hand, because some genes have been identified by previous studies to have biological functions or to be involved in pathways related to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2010
ISSN: 0277-6715
DOI: 10.1002/sim.4137